

INDEX

EASY RAIL: THE SOLUTION IS EASY	D4
EXAMPLES OF LOAD CAPACITIES	D5
ORDER CODES	D6
MOUNTING EXAMPLES	D7
TECHNICAL DATA	D8
STANDARD CONFIGURATIONS	D10
VERIFICATION UNDER STATIC LOAD	D12
	D13
CLEARANCE AND PRELOAD	D13
	D13
LINEAR PRECISION	D13
SPEED	D13
APPLICATION NOTES	D14
TEMPERATURE	D14
ANTICORROSIVE PROTECTION	D14
LUBRICATION	D14

EASY RAIL: THE SOLUTION IS EASY

Simplicity is the distinguishing characteristic of this family of **steel linear bearings**. Designed to quickly and easily fit into demanding applications, these **simple yet durable** bearings confirm **ROLLON**'s commitment to offering **innovative linear solutions** to real world applications.

Easy: these **versatile** rails solve extremely diverse and apparently complex problems of linear motion with ease. They are at home wherever **compactness**, **smooth movement**, **high load capacity**, and versatility are needed along with **affordability**; where **reliability is key** and where **ease of mounting** takes slight precedence over absolute **precision**. **EASY RAIL** solves problems. **EASY RAIL** contains five different sized sections – 22, 28, 35, 43, 63 mm – offering linear precision of up to 100 microns and load capacities of several thousand pounds per slider. With many different slider lengths available per section, several hundred different combinations of solutions are possible.

The three main components, the hardened rail, the hardened slider, and the ballcage, assembled in many different ways, are able to quickly resolve most needs whether based on load capacity or on stroke.

Assembled with particular care and attention, these **high-quality** slides can be **mounted quickly and easily** allowing notable saving in mounting time.

While the simplicity of these slides may be their most distinguishing characteristic, their numerous other advantages need mentioning:

Compactness. The slider always runs *inside* the **hardened steel races** of the rail – typical of Rollon's innovative products.

High Strength. The raceways of both slider and rail are always hardened. Combined with the hardened ball-bearings, these slides will carry **extremely high loads** with continual movements. **Reliability.** The **quality** of both materials and workmanship allow these linear bearings to offer repeated, continual, inexpensive, and smooth movement even in severe conditions.

EASY RAIL products have been applied in the most varied of sectors. A few application examples: protective door enclosures, providing the movement in medical machinery such as X-ray tables, single or multiple axis manipulators. Wherever a heavy duty, compact, reliable, and affordable linear bearing is needed, the solution is EASY.

EXAMPLES OF LOAD CAPACITIES

ORDER CODES

The **SN** series linear bearings are composed of three main elements. By combining the elements to fit your application requirements, you can order a standard product that fits the application as though it were custom made for it. The components are:

- A cold-drawn, C-shaped steel rail with induction-hardened raceways. The external dimensions of this compact rail are the same as the complete bearing since the other two elements move inside the well-protected, *internal* raceways. This rigid rail is often mounted to the fixed structure, with countersunk screws.

One or more cold-drawn steel sliders with induction hardened raceways. The slider moves *inside* the C-shaped rail and is generally attached to the moving structure where it transfers the load to the rail through a double row of ball bearings. Threaded holes permit the sliders to be mounted to the moving structure.
One or more steel cages, each with a double row of high precision ball-bearings made from bearing steel. The ballcage allows the slider to easily move inside the rail with almost no friction.

There are three principle ways of combining these components to form standard yet seemingly custom fit linear bearings (for more detailed information and assistance, please contact our engineering department).

- SN SERIES WITH A SINGLE SLIDER:

This is the simplest and most popular combination (we refer to this combination on pages D8, D9, D10 and D11) with **one internal slider and ballcage running inside the rail**.

MOUNTING EXAMPLES

With regard to the external load, the rail may be used in both the positions shown in the diagrams at right. However, when it is used in the position shown in the diagram 2 (axially) the load capacity will be reduced to 70% of the radial capacity C_{orad} (see also **Verification under static load** on page D12).

The number of fixing holes in standard length rails is sufficient to support the stated loads, provided that the track-rails are fixed with screws having a minimum quality of class 10.9. The fixed rail and slider assume the stiffness as the structure to which they are mounted. Therefore they must both be mounted to rigid structures with suitably strong screws.

An angled, adjustable support as shown at right is not necessary but will reduce the shear stress on the screws and will increase the stiffness of the system. Flush-mounted or non-adjustable supports, like those shown in the two diagrams at right, cannot guarantee support of the rail because countersunk screws must be used for fixing.

Stroke end stops must be fitted on the moving element of the machine. The built-in stops on the ball bearings are only in place to prevent dismantling and **are not suitable** for use as stroke end stops on the machine. We also suggest that there are slotted fixing holes on the machine part connecting to the slider.

Other important application fields are packaging machines, medical equipment etc.

Load capacity

Mx

[Nm]

m

[mm]

My

[Nḿ]

N.

holes

Fixed Rail

n

[mm]

Mz

[Nm]

κ

[mm]

TECHNICAL DATA

By combining the three main standard components with the rules listed below, it is possible to obtain standard linear bearings that are custom fit to each application (for **order codes** see page D6, for **standard configurations**, see pages D10 and D11).

KEY RULES:

1. To ensure access to all mounting holes in the rail, it is necessary that $S \le L/2 - K$. This means that the slider length must be less than or equal to half of the rail length minus a constant "K" (different for each size).

2. To help choose the right rail length it is necessary to remember that L = S + H + K. In other words, the length of the slider plus the stroke plus the constant "K" must always equal the total rail length.

3. To ensure proper smooth movement, it is necessary that $H \le 7S$. This means that the maximum theoretical stroke can never exceed seven times the slider length S (this maximum theoretical stroke is not always reachable with the standard rail lengths listed below. The maximum *real* stroke possible is limited by Rule 2).

Example: choosing the 130 mm slider for an **SN28**, the maximum theoretical stroke is 910 mm (Rule 3). In actuality, a standard SN28-130-... can only have a *real* max. stroke H of 840 mm (Rule 2: 1030+840+40=1010mm). If the next longer rail (1170 mm) had been chosen, the obtainable stroke would be 1000 mm, longer than the allowable value (violating Rule 3). The correct code is therefore **SN28-130-840-1010**. (See page D6 for more)

b

[mm]

N.

holes

N.

holes

C_{0rad}

[N]

κ

[mm]

C_{0ax}

[N]

L

[mm]

а

[mm]

m

[mm]

Fixed Rail

n

[mm]

S

[mm]

L

[mm]

"SN22" SERIES Moving Slider

Ordering Example:

- Moving **slider S**: 210 mm;
- Required **stroke H**: 610 mm;
- Fixed **rail L**: 210 + 610 + 30 = 850 mm (see Rule 2 above). The correct order code

is therefore: **SN22-210-610-850.**

P	Noving	Slider		Load Capacity					
S [mm]	a [mm]	b [mm]	N. holes	C _{0rad} [N]	C _{0ax} [N]	M _x [Nm]	M _y [Nm]	Mz [Nm]	
60	10	20	3	3480	2436	28	24	35	
80	10	20	4	4640	3248	38	43	62	
130	25	80	2	7540	5278	61	114	163	
210	25	80	3	12180	8526	98	298	426	
290	25	80	4	16820	11774	136	569	813	
370	25	80	5	21460	15022	174	926	1323	
450	25	80	6	26100	18270	211	1370	1958	

	Fixed Rail											
L	m	n	Ν.	к								
[mm]	[mm]	[mm]	holes	[mm]								
130	25	80	2	40								
210	25	80	3	40								
290	25	80	4	40								
370	25	80	5	40								
450	25	80	6	40								
530	25	80	7	40								
610	25	80	8	40								
690	25	80	9	40								

L	m	n	Ν.	к	
[mm]	[mm]	[mm]	holes	[mm]	
770	25	80	10	40	Ξ
850	25	80	11	40	l jo
930	25	80	12	40	Ne l
1010	25	80	13	40	ے آجا
1170	25	80	15	40	122 6
1330	25	80	17	40	b [°] į
1490	25	80	19	40	<u> </u>
1650	25	80	21	40	<u> </u>

Moving Slider wei	1.0 g/mm
ixed Rail weight:	.7 g/mm

Moving Slider weight: 1.5 g/mm

Cat. 41-41bE

• "SN35" SERIES

	Moving Slider								Load Capacity								
	S		а		С	N	N. C.		ad	C _{0ax}	M,		N	1 _y	I	Mz	1
	[mm]	[mm]	[m	m]	hol	es	[N]	[N]	[Nm	ı]	[N	m]	[]	Nm]	
	130)	25	8	0	2		975	50	6825	95		14	48	2	211	
	210)	25	8	0	3		157	50	11025	153	3	38	36	5	551	
	290)	25	8	0	4		217	50	15225	211	1	73	36	1(051	
	370)	25	8	0	5	i i	277	50	19425	269)	11	98	1	711	
	450)	25	8	0	6	5	337	50	23625	327	7	17	72	2	531	
	530)	25	8	0	7	'	397	50	27825	385	5	24	58	3	511	
	610)	25	8	0	8		457	50	32025	444	1	3256		4651		
	Fixed Rail									Fix	xed	Ra	uil				
	L	m		n	N	۱.	к			L	m	r	۱	N		ĸ	
[nm]	[mn	n] [m	m]	ho	les	[n	nm]		[mm]	[mm]	[m	m]	hole	es	[mn	n]
2	290	25	5 8	0	4	4	Ę	50		930	25	8	0	12	2	50)
~	370	25	5 8	0	ļ	5	Ę	50		1010	25	8	0	13	3	50)
4	450	25	5 8	0	(3	Ę	50		1170	25	8	0	15	5	50)
Ę	530	25	6 8	0		7	Ę	50		1330	25	8	0	17	7	50)
6	610	25	6 8	0	8	3	50			1490	25	8	0	- 19)	- 50)
6	690	25	6 8	0	9	9	50			1650	25	8	0	21	I	50)
7	770	25	6 8	0	1	0	Ę	50		1810	25	8	0	23	3	50)
8	350	25	6 8	0	1	1	Ę	50									

• "SN43" SERIES

М	oving	Slider		Load Capacity						
S	a	b	N.	C _{0rad}	C _{0ax}	Mx	My	Mz		
[mm]	[mm]	[mm]	noies	[N]		lini	[INM]	linu		
130	25	80	2	13910	9737	172	211	301		
210	25	80	3	22470	15729	278	551	786		
290	25	80	4	31030	21721	383	1050	1500		
370	25	80	5	39590	27713	489	1709	2441		
450	25	80	6	48150	33705	595	2528	3611		
530	25	80	7	56710	39697	701	3507	5009		
610	25	80	8	65270	45689	806	4645	6636		
	Elected at	Dell				Electro	I Dail			

Moving Slider weight: 5.0 g/mm	
-----------------------------------	--

Fixed Rail weight: 2.6 g/mm

Γ

Fixed Rail weight:

1.8 g/mm

Moving Slider weight: 2.5 g/mm

	Fiz	xed Ra	uil		Fixed Rail						
L	m	n	Ν.	к	L	m	n	Ν.	ĸ		
[mm]	[mm]	[mm]	holes	[mm]	[mm]	[mm]	[mm]	holes	[mm]		
290	25	80	4	50	930	25	80	12	50		
370	25	80	5	50	1010	25	80	13	50		
450	25	80	6	50	1170	25	80	15	50		
530	25	80	7	50	1330	25	80	17	50		
610	25	80	8	50	1490	25	80	19	50		
690	25	80	9	50	1650	25	80	21	50		
770	25	80	10	50	1810	25	80	23	50		
850	25	80	11	50	1970	25	80	25	50		

		Movi	ng	Slide	r		Load Capacity							
	S	a		b	N.		C _{0r}	ad	C _{0ax}		M	x	Mv	Mz
	[mm]	[m	m]	[mm]	hole	s	[N]	[N]		[Nr	n] [Nm]	[Nm]
	130	2	5	80	2		260	00	1820	0	44	3 3	394	563
	210	2	5	80	3		420	00	2940	0	71	6 1	029	1470
	290	2	5	80	4		580	00	4060	0	98	9 1	962	2803
	370	2	5	80	5		740	00	5180	0	120	61 3	194	4563
	450	2	5	80	6		900	00	6300	0	153	34 4	725	6750
	530	2	5	80	7		1060	00	7420	0	180	07 6	554	9363
	610	2	5	80	8		1220	00	8540	0	20	79 8	682	12403
Fixed Rail								Fixed Rail						
	L	m		n	Ν.		К		L		m	n	N.	ĸ
[m	וm]	[mm]	[m	nm] I	noles	[mm]	[1	mm]	[r	mm]	[mm]	holes	s [mm]
6	10	25	8	30	8		80	1	170		25	80	15	80
60	00	25	c	0	0		00	- 1	220		25	00	17	00

Cat. 41-41bE

EASY RAIL

STANDARD CONFIGURATIONS

SN22 SERIES

Orden Code	Quider	Ct-al-	Bail	Order Corde	Quider	Ctanler.	-
Urder Code	Slider	Stroke	Kall	Urder Code	Slider	Stroke	-
SN22-40-60-130	40	60	130	SN22-130-610-770	130	610	1
SN22-40-140-210	40	140	210	SN22-130-690-850	130	690	
SN22-40-220-290	40	220	290	SN22-130-770-930	130	770	
SN22-60-40-130	60	40	130	SN22-130-850-1010	130	850	Ĺ
SN22-60-120-210	60	120	210	SN22-210-210-450	210	210	
SN22-60-200-290	60	200	290	SN22-210-290-530	210	290	
SN22-60-280-370	60	280	370	SN22-210-370-610	210	370	Г
SN22-60-360-450	60	360	450	SN22-210-450-690	210	450	t
SN22-80-100-210	80	100	210	SN22-210-530-770	210	530	t
SN22-80-180-200	80	180	200	SN22-210-610-950	210	610	⊢
SN22-00-100-290	00	100	230	SN22-210-010-030	210	600	⊢
SN22-80-260-370	80	260	370	SN22-210-690-930	210	690	⊢
SN22-80-340-450	80	340	450	SN22-210-770-1010	210	770	⊢
SN22-80-420-530	80	420	530	SN22-210-930-1170	210	930	⊢
SN22-80-500-610	80	500	610	SN22-290-290-610	290	290	L
SN22-130-130-290	130	130	290	SN22-290-370-690	290	370	
SN22-130-210-370	130	210	370	SN22-290-450-770	290	450	
SN22-130-290-450	130	290	450	SN22-290-530-850	290	530	Г
SN22-130-370-530	130	370	530	SN22-290-610-930	290	610	Г
SN22-130-450-610	130	450	610	SN22-290-690-1010	290	690	t
SN22-130-530-690	130	530	690	SN22-290-850-1170	290	850	t
							<u> </u>
Order code	Slider	Stroke	Rail	Order Code	Slider	Stroke	
SN28-60-30-130	60	30	130	SN28-210-680-930	210	680	_
SN28-60-110-210	60	110	210	SN28-210-760-1010	210	760	_
SN28-60-190-290	60	190	290	SN28-210-920-1170	210	920	
SN28-60-270-370	60	270	370	SN28-210-1080-1330	210	1080	
SN28-60-350-450	60	350	450	SN28-290-280-610	290	280	
SN28-80-90-210	80	90	210	SN28-290-360-690	290	360	
SN28-80-170-290	80	170	290	SN28-290-440-770	290	440	_
SN28-80-250-370	80	250	370	SN28-290-520-850	290	520	-
SN28-80-330-450	80	330	450	SN28-200-600 020	200	600	_
20-00-330-430	00	440	400	SN28 200 680 4040	230	600	_
DIN20-00-410-530	00	410	530	SN20-290-080-1010	290	000	_
5IN28-80-490-610	80	490	610	SN28-290-840-1170	290	840	_
SN28-130-120-290	130	120	290	SN28-290-1000-1330	290	1000	
5N28-130-200-370	130	200	370	SN28-290-1160-1490	290	1160	_
SN28-130-280-450	130	280	450	SN28-370-360-770	370	360	
SN28-130-360-530	130	360	530	SN28-370-440-850	370	440	
SN28-130-440-610	130	440	610	SN28-370-520-930	370	520	
SN28-130-520-690	130	520	690	SN28-370-600-1010	370	600	
SN28-130-600-770	130	600	770	SN28-370-760-1170	370	760	
SN28-130-680-850	130	680	850	SN28-370-920-1330	370	920	_
SN28-130-760-930	130	760	930	SN28-370-1080-1490	370	1080	
SN28-130-840-1010	130	840	1010	SN28-450-440-930	450	440	
SN28-210-200-450	210	200	450	SN28-450-520-4040	450	520	
SN20-210-200-450	210	200	400	SN20-450-520-1010	450	520	
SN28-210-280-530	210	280	530	SN28-450-680-1170	450	680	_
SN28-210-360-610	210	360	610	SN28-450-840-1330	450	840	
5N28-210-440-690	210	440	690	SN28-450-1000-1490	450	1000	
SN28-210-520-770	210	520	770	SN28-450-1160-1650	450	1160	
SN28-210-600-850	210	600	850				
Order Code	Slider	Stroke	Rail	Order Code	Slider	Stroke	_
SN35-130-110-200	130	110	200	SN35-200-000-1220	200	000	-
2N25-120-110-280	130	100	230	SN35-290-990-1330	290	1150	_
DNDE 400 070 450	130	190	3/0	SN35-290-1100-1490	290	1150	_
5N35-130-270-450	130	2/0	450	SN35-290-1310-1650	290	1310	
5N35-130-350-530	130	350	530	SN35-370-350-770	370	350	
SN35-130-430-610	130	430	610	SN35-370-430-850	370	430	_
SN35-130-510-690	130	510	690	SN35-370-510-930	370	510	_
SN35-130-590-770	130	590	770	SN35-370-590-1010	370	590	
SN35-130-670-850	130	670	850	SN35-370-750-1170	370	750	
SN35-130-750-930	130	750	930	SN35-370-910-1330	370	910	
SN35-130-830-1010	130	830	1010	SN35-370-1070-1490	370	1070	_
SN35-210-190-450	210	190	450	SN35-370-1230-1650	370	1230	_
SN35-210-270-530	210	270	530	SN35-450-430-930	450	430	-
SN35-210-270-000	210	250	610	SN35-450 510 1010	450	510	-
SN35-210-330-010	210	300	600	SN35-450-510-1010	450	510	_
5N35-210-430-690	210	430	690	SN35-450-670-1170	450	670	
5N35-210-510-770	210	510	770	SN35-450-830-1330	450	830	
SN35-210-590-850	210	590	850	SN35-450-990-1490	450	990	_
SN35-210-670-930	210	670	930	SN35-450-1150-1650	450	1150	
SN35-210-750-1010	210	750	1010	SN35-450-1310-1810	450	1310	
SN35-210-910-1170	210	910	1170	SN35-530-590-1170	530	590	
SN35-210-1070-1330	210	1070	1330	SN35-530-750-1330	530	750	
SN35-210-1230-1490	210	1230	1490	SN35-530-910-1490	530	910	
SN35-200-270-610	200	270	610	SN35-530-1070-1650	530	1070	
20126 200 260 600	230	210	600	CN25-530-1070-1030	530	1070	_
20103-290-330-090	290	330	770	SN35-530-1230-1010	640	670	_
NN35-290-430-770	290	430	//0	SN35-610-670-1330	610	6/0	_
sN35-290-510-850	290	510	850	SN35-610-830-1490	610	830	
	000	500	000		040	000	

SN35-610-1150-1810

610

1150

1810

SN35-290-670-1010

SN35-290-830-1170

290

290

670

830

1010

1170

SN43 SERIES

Order Code	Slider	Stroke	Rail
SN43-130-110-290	130	110	290
SN43-130-190-370	130	190	370
SN43-130-270-450	130	270	450
SN43-130-350-530	130	350	530
SN43-130-430-610	130	430	610
SN43-130-510-690	130	510	690
SN43-130-590-770	130	590	770
SN43-130-670-850	130	670	850
SN43-130-750-930	130	750	930
SN43-130-830-1010	130	830	1010
SN43-210-190-450	210	190	450
SN43-210-270-530	210	270	530
SN43-210-350-610	210	350	610
SN43-210-430-690	210	430	690
SN43-210-510-770	210	510	770
SN43-210-590-850	210	590	850
SN43-210-670-930	210	670	930
SN43-210-750-1010	210	750	1010
SN43-210-910-1170	210	910	1170
SN43-210-1070-1330	210	1070	1330
SN43-210-1230-1490	210	1230	1490
SN43-210-1390-1650	210	1390	1650
SN43-290-270-610	290	270	610
SN43-290-350-690	290	350	690
SN43-290-430-770	290	430	770
SN43-290-510-850	290	510	850
SN43-290-590-930	290	590	930
SN43-290-670-1010	290	670	1010
SN43-290-830-1170	290	830	1170
SN43-290-990-1330	290	990	1330
SN43-290-1150-1490	290	1150	1490

Order Code	Slider	Stroke	Rail
SN43-290-1310-1650	290	1310	1650
SN43-290-1470-1810	290	1470	1810
SN43-370-350-770	370	350	770
SN43-370-430-850	370	430	850
SN43-370-510-930	370	510	930
SN43-370-590-1010	370	590	1010
SN43-370-750-1170	370	750	1170
SN43-370-910-1330	370	910	1330
SN43-370-1070-1490	370	1070	1490
SN43-370-1230-1650	370	1230	1650
SN43-370-1390-1810	370	1390	1810
SN43-450-430-930	450	430	930
SN43-450-510-1010	450	510	1010
SN43-450-670-1170	450	670	1170
SN43-450-830-1330	450	830	1330
SN43-450-990-1490	450	990	1490
SN43-450-1150-1650	450	1150	1650
SN43-450-1310-1810	450	1310	1810
SN43-450-1470-1970	450	1470	1970
SN43-530-590-1170	530	590	1170
SN43-530-750-1330	530	750	1330
SN43-530-910-1490	530	910	1490
SN43-530-1070-1650	530	1070	1650
SN43-530-1230-1810	530	1230	1810
SN43-530-1390-1970	530	1390	1970
SN43-610-670-1330	610	670	1330
SN43-610-830-1490	610	830	1490
SN43-610-990-1650	610	990	1650
SN43-610-1150-1810	610	1150	1810
SN43-610-1310-1970	610	1310	1970

SN63 SERIES

Order Code	Slider	Stroke	Rail
SN63-130-400-610	130	400	610
SN63-130-480-690	130	480	690
SN63-130-560-770	130	560	770
SN63-130-640-850	130	640	850
SN63-130-720-930	130	720	930
SN63-130-800-1010	130	800	1010
SN63-210-320-610	210	320	610
SN63-210-400-690	210	400	690
SN63-210-480-770	210	480	770
SN63-210-560-850	210	560	850
SN63-210-640-930	210	640	930
SN63-210-720-1010	210	720	1010
SN63-210-880-1170	210	880	1170
SN63-210-1040-1330	210	1040	1330
SN63-210-1200-1490	210	1200	1490
SN63-210-1360-1650	210	1360	1650
SN63-290-240-610	290	240	610
SN63-290-320-690	290	320	690
SN63-290-400-770	290	400	770
SN63-290-480-850	290	480	850
SN63-290-560-930	290	560	930
SN63-290-640-1010	290	640	1010
SN63-290-800-1170	290	800	1170
SN63-290-960-1330	290	960	1330
SN63-290-1120-1490	290	1120	1490
SN63-290-1280-1650	290	1280	1650
SN63-370-320-770	370	320	770

Order Code	Slider	Stroke	Rail
SN63-370-400-850	370	400	850
SN63-370-480-930	370	480	930
SN63-370-560-1010	370	560	1010
SN63-370-720-1170	370	720	1170
SN63-370-880-1330	370	880	1330
SN63-370-1040-1490	370	1040	1490
SN63-370-1200-1650	370	1200	1650
SN63-370-1360-1810	370	1360	1810
SN63-450-400-930	450	400	930
SN63-450-480-1010	450	480	1010
SN63-450-640-1170	450	640	1170
SN63-450-800-1330	450	800	1330
SN63-450-960-1490	450	960	1490
SN63-450-1120-1650	450	1120	1650
SN63-450-1280-1810	450	1280	1810
SN63-530-560-1170	530	560	1170
SN63-530-720-1330	530	720	1330
SN63-530-880-1490	530	880	1490
SN63-530-1040-1650	530	1040	1650
SN63-530-1200-1810	530	1200	1810
SN63-530-1360-1970	530	1360	1970
SN63-610-640-1330	610	640	1330
SN63-610-800-1490	610	800	1490
SN63-610-960-1650	610	960	1650
SN63-610-1120-1810	610	1120	1810
SN63-610-1280-1970	610	1280	1970

VERIFICATION UNDER STATIC LOAD

The load capacities of the **SN** series linear ball bearings are based on slider lengths and are shown on the tables on the previous pages. The loads and moments should be centered on the slider (for uncentered loads and moments, please see the paragraph at the bottom of this page). In the **SN** series the values of the loads and moments are independent from the slider position during the stroke.

By static verification, the radial load C_{orad} , the axial load C_{oax} and the moments M_x , M_y , M_z , give the maximum permissible value for the load, beyond which the rolling quality and the total mechanical strength may be compromised. Verification under static load has to be carried out by determining the necessary safety factor z which corresponds most closely to the actual loads and working conditions shown in the table below.

Neither shocks nor vibrations, smooth and low frequency reverse, high precision in assembly, no elastic yielding;	
Normal assembly conditions;	1.5 - 2
Shocks and vibrations, significant elastic yield, high frequency reverse;	2 - 3.5

Verification must be made to ensure that the external load P or the external moment M are lower than or equal to the load capacities divided by the safety factor z:

$\frac{P}{C_{orad}} \leqslant \frac{1}{z}$	or $\frac{P}{C_{0x}} \leq \frac{1}{z}$ or	$\frac{M}{M_x(o M_y o M_z)} \leqslant \frac{1}{z}$	[1]
if P is only radial	if P is only axial	if only moments are present	

where **P** is the external applied load, in newton and **M** is the external applied moment, in Nm. This is valid if the external load consists of a single force or a single moment. When forces and moments are present simultaneously, as frequently happens, verification must be made to ensure that the sum of each force or applied moment complies with the following formula:

$$\frac{P_{rad}}{C_{0rad}} + \frac{P_{ax}}{C_{0ax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z} \leqslant \frac{1}{z} \quad [2]$$

 P_{rad} , P_{ax} are the radial and axial resultants of the applied external loads, in newton;

 $\rm M_{_1}, \, \rm M_{_2}, \, \rm M_{_3}$ are the resultant external moments, in Nm.

External load P in a non-central position on the slider:

If the load is not centered on the slider, the distribution of the different stresses on the balls and the consequent reduction in the load capacity C must be considered. As shown in the diagram at right, this reduction is dependent upon the distance **d** between the center of the slider and the point of application of the external load (where **q** is the coefficient of position and the distance **d** is expressed in fractions of the slider length S).

The external load ${\bf P}$ which can be applied as a function of ${\bf d}$ is:

$$P = q C_{orad}$$
 if the external load P is radial $P = q C_{orad}$ if the external load P is axial

For the verification under static load and the lifetime calculation (see page D13) in the formulas (1), (2), (3), P_{rad} and P_{ax} must be replaced by the corresponding equivalent values calculated as follows:

$$P_{rad} = \frac{P}{q}$$
 if the external load P is radial
 $P_{ax} = \frac{P}{q}$ if the external load P is axial

LIFETIME CALCULATION

The life of a linear ball bearing is influenced by many factors, such as applied load, working speed, precision in assembly, shocks and vibrations, operating temperature, working environment and lubrication. The definition of life is subject to interpretation: life is intended to mean the time elapsed between commencing operation and the appearance of the first signs of fatigue on the raceways of the bearings. In practice, however, it can better be defined as the functional failure of the ball bearing due to the destruction or excessive wear of one of its parts.

This can be taken into account by introducing a correction factor (f_i in the formula below). The life may thus be calculated in compliance with the following relation:

$$L_{\kappa m} = 100 \quad \cdot \left(\frac{C}{P_e} \cdot \frac{1}{f_i}\right)^3$$

where:

 \tilde{C} is the dynamic load factor, in N, and is numerically equivalent to the load capacity C_{0rad} ; P_a is the applied equivalent load, in N;

f is the service factor (see below table for values).

Neither shocks nor vibrations smooth and low-frequency reverse; clean working environment; low speed (< 0.5 m/s);	
Light vibrations; medium speed (between 0.5 and 0.7 m/s) and medium reverse frequency;	1.5 - 2
Shocks and vibrations; high speed (> 0.7 m/s) and high reverse frequency; highly contaminated working environment;	2 - 3.5

When an external load P is equal to the radial load capacity $C_{_{0rad}}$ (which obviously can never be exceeded), the life in ideal conditions will be 100 km (f_i=1). With a single external load P, then obviously P_a=P.

If the external load consists of several forces or moments acting simultaneously, then the equivalent external load must be calculated according to the formula:

$$P_{e} = P_{rad} + \left(\frac{P_{ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}\right) \cdot C_{0ad} \quad [3]$$

CLEARANCE AND PRELOAD

The linear ball bearings of the **SN** series are normally assembled with **G1** clearance, this means that between the slider and the rail there is the lowest clearance which ensures maximum smoothness. For more information, please contact our engineering department.

FRICTION COEFFICIENT

When correctly lubricated, assembled on flat rigid structures, and parallel when used in pairs, the friction coefficient is equal to or less than 0.01. This value may vary in particular assembly situations (see "*Application Notes*" on the following page).

LINEAR PRECISION

With the rail fixed with all the screws to a theoretically flat structure and with the fixing holes on this structure in a straight line, the linear precision of the path followed by the slider with respect to a fixed external reference should comply with the following relation:

$$\boxed{//} = \frac{\sqrt{H}}{300} (mm)$$

where H is the stroke of the slider in mm.

SPEED

Generally speaking, the linear ball bearings of the **SN** series can be used for speeds up to 0.8 m/s. For high movement frequencies, and therefore high accelerations during reversal of movement, it is adviseable not to use bearings with particularly long ball cages, to reduce the risk of ball cage moving out of phase (see "*Application Notes*" on the following page).

APPLICATION NOTES

The **SN** series linear ball bearings have a ball cage mounted between the rail and the slider. During movement of the slider relative to the rail, the cage moves a distance equal to half the stroke of the slider. The stroke ends when the slider contacts the bent tabs situated at the ends of the ball cage.

The ball cage usually moves in function of the slider because of the rolling motion of the balls in the raceways. Sometimes however, instead of rolling, the balls slip, causing a loss of synchronism between cage and slider, resulting in premature contact of the ball cage with the end stops thus reducing the theoretical stroke.

The theoretical stroke can be restored by slipping the slider through the ball cage until there is simultaneous contact between the end stops of the track-rail, cage and slider. This procedure is known as re-phasing. There will be a strong resistance to sliding during the rephasing stage, resulting in a temporary increase in the load applied to the track-rail.

Ball cage slipping can be caused by inaccurate assembly, movement dynamics, load values and load variations.

To reduce to a minimum the inconvenience caused by an out of phase ball cage, the recommendations given below should be followed.

The stroke should be constant for the entire working cycle and should preferably be as close as **possible to the nominal stroke of the linear bearing.** For applications using variable strokes, it is important to accept the possibility of rephasing the ball cage, and ensuring that there is sufficient drive capacity to allow for an occasional increase in traction, amounting to an increase in the coefficient of friction till about 0.1.

An alternative solution, already adopted by several customers, consists of periodically inserting into the working cycle a movement without load, and equal to the maximum stroke allowed by the bearing. This either prevents the ball cage from moving out of phase or rephases it automatically.

In cases where a pair of parallel linear bearings is used, any errors in parallelism or planarity of the contact surfaces during assembly will intensify phase displacement and consequent rephasing activity. If at the planning or design stage, it is anticipated that rephasing problems will occur, it is advisable to specify "**linear ball bearings with increased clearance**".

SN products can be used for horizontal movements only.

When using linear ball bearings in the **SN** series with multiple independent or synchronised sliders, if there is any uncertainty regarding the precision of the fixing surfaces for the track-rails and sliders, it's strongly recommended to use **linear bearings with increased clearance**. For any further information, please contact our engineering department.

futurer mormation, please contact our engineering department

TEMPERATURE

SN products can be used in environments with temperatures of up to +170°C (+338 °F) (over 130°C [266°F] it is necessary to use a high temperature grease). For use at higher temperatures, contact our engineering department.

ANTICORROSIVE PROTECTION

All the elements (slider, ball cage and rail) are protected against corrosion by **electrolytic zinc plating** in compliance with ISO 2081 standards.

Upon request, other surface treatments can be done.

For any further information, please contact our engineering department.

LUBRICATION

This is largely dependent upon the working environment. Under normal conditions, lubrication should be scheduled for every **100 km** of slider travel, using a good quality lithium-soap grease of medium consistency and of the type normally used for rolling element bearings.